
Spectral Analysis of Network Traffic

Georgi T. Todorov

September 12, 2007

1

Copyright c© 2007 Georgi T. Todorov.
Permission is granted to copy, distribute and/or modify this document under the

terms of the GNU Free Documentation License, Version 1.2 or any later version
published by the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is located @ http:

//www.gnu.org/licenses/fdl.txt.

Introduction

Computer networks are part of every company and business. As more and more
important data is moved around these networks, their security is becoming even
more important. There are various tools that analyze network traffic and look
for different patterns and ”fingerprints” to identify malicious traffic among other
things. This study uses a technique that is popular in the area of sound waves
and engineering. That technique uses Fourier Transform - the spectral function
[Tolstov, 1976] - to generate the periodicity or frequency of given set of data.

In mathematics, the Fourier transform is a certain linear operator that maps
functions to other functions. Loosely speaking, the Fourier transform decomposes
a function into a continuous spectrum of its frequency components, and the inverse
transform synthesizes a function from its spectrum of frequency components. A
useful analogy is the relationship between a series of pure notes (the frequency
components) and a musical chord (the function itself). In mathematical physics,
the Fourier transform of a signal x(t) can be thought of as that signal in the
”frequency domain.” This is similar to the basic idea of the various other Fourier
transforms including the Fourier series of a periodic function.[Wikipedia, 2007b]

Suppose x is a number—complex-valued Lebesgue integrable function. The
Fourier transform to the frequency domain ω is given by the function:

X(ω) =
1√
2π

∫ ∞

−∞
x(t)e−iωt dt, for every real number ω.

When the independent variable t represents time (with SI unit of seconds), the
transform variable ω; represents angular frequency (in radians per second). If X(ω)
is defined as above, and x(t) is sufficiently smooth, then it can be reconstructed by
the inverse transform:

http://www.gnu.org/licenses/fdl.txt
http://www.gnu.org/licenses/fdl.txt

2

x(t) =
1√
2π

∫ ∞

−∞
X(ω)eiωt dω, for every real number t.

The interpretation of X(ω) is aided by expressing it in polar coordinate form,
X(ω) = A(ω)eiφ(ω), where :

A(ω) = |X(ω)| the amplitudeφ(ω) = ∠X(ω) the phase

Then the inverse transform can be written:

x(t) =
1√
2π

∫ ∞

−∞
A(ω)ei(ωt+φ(ω)) dω

which is a recombination of all the frequency components of x(t). Each compo-
nent is a complex sinusoid of the form eiωt whose amplitude is proportional to A(ω)
and whose initial phase angle (at t = 0) is φ(ω).

The implementation of the Fast Fourier Transform that is used is called ”Fastest
Fourier Transform in the West” (FFTW). It is known as the fastest free software
implementation of the Fast Fourier transform (FFT) algorithm. FFTW can com-
pute transforms of arbitrarily sized arrays (including prime lengths). It works best
on arrays which have sizes which have multiple factors, and uses a variety of al-
gorithms to compute the transform. A particularly strong feature is the ability
to run tests on a particular sized array on a particular processor. These tests de-
termine the fastest method to compute the transform, and this knowledge, which
the authors call ”wisdom” can be stored in a file or string for later use. Given a
large number of transforms to be computed, all of the same size, this method can
yield a worthwhile gain in speed compared to the default case when FFTW uses a
heuristically chosen algorithm.[Wikipedia, 2007a]

Fourier Transform and Network Traffic

Given the nature of network traffic data, Fourier Transforms can be used to identify
periodicity over the network. Periodic traffic, in general, is special traffic over the
network and should be of interest. When optimizing a network, it is interesting
to know how often backups are being performed and does this traffic overlap with
other periodic traffic (server synchronization for example). If so, backups can be
shifted to different time to distribute the load over time instead of creating peak

3

and low times. Also, a periodic traffic could mean a probing script, or a hacker
that comes back around the same time every day.

For this study a real data sample was used. The data consist of one day of
incoming traffic with 1 second samples (86400 samples total). First the data was
gathered using libstatgrab[i scream, 2006] and processed to an rrd database using
rrdtool:

rrdtool create traffic.rrd -s 1 -b 1169916192

DS:in:DERIVE:1000:0:12500000

DS:out:DERIVE:1000:0:12500000

RRA:AVERAGE:0.5:1:86400

RRA:AVERAGE:0.5:7:86400

The gathered data was plotted like this:

rrdtool graph data3.1.png -s 1170543274 -e 1170629672 -v ”Traffic”

–lazy -h 80 -w 6000 -l 0 -a PNG

DEF:inboundorig= traffic.rrd:in:AVERAGE

LINE1:inboundorig#FF00FF:”Incoming traffic”

Figure 1: Original Traffic Flow

The actual implementation of the Fourier Transforms is the FFTW3 library[Frigo and Johnson, 2006]
which provides forward and inverse transform options. For our ease a real to real
transform was performed. The input (list of doubles) was extracted from the rrd
database using the following set of commands:

rrdtool fetch traffic.rrd AVERAGE | perl stdin.pl | cut -d ” ” -f 1,2 > data.in

4

Where stdin.pl is a simple perl script that converts the numbers from their scien-
tific annotation to normal annotation that will be processed by the main program.
Also in the above example, the original timestamp is also recorded and processed
even though it is never used later.

The next tool used is a simple C++ program that uses the FFTW3 library to
compute the transform of the traffic. The output of the program is in data format
that can be used by gnuplot[Thomas Williams, 2004].
#include <fftw3.h>
#include <iostream>
#include <vector>
#include <math.h>

using namespace std;
int main ()
{

int size=0;//number of samples

double cor = 0.00001157; // equals to 1/86400 of the second

long temp2; // timestamp

double temp,; // data

vector<double> data; // data vector

vector<long> times; // timestamp vector

double absval; // compute absolute value for better plotting

int m=1;//a counter

double cc; // frequency count

while (cin >> temp2){
times.push back(temp2);
cin >> temp;
data.push back(temp);

}

size = data.size();
double original[size]; // input array

double transformed [size]; //output array

//create an array with the data for fftw plan r2r 1d

for (int i = 0; i< size; i++){
original[i] = data[i];

}

fftw plan p;
p = fftw plan r2r 1d(size , original , transformed, FFTW R2HC , FFTW ESTIMATE);
fftw execute(p);
// output data for gnuplot

for (int i = 0;i < size-2;i++){
absval = sqrt(transformed[i]∗transformed[i]);

5

cc = (double)m∗cor;
cout << cc<<" "<<absval<< endl;

m++;
}
return 0;

}

After the data was processed, using the following lines, a readable spectrum images was generated
under OS X using AquaTerm[Persson, 2004] with clear indications of periodicity in the sample data.

gnuplot> set term aqua
gnuplot> set size 1,1
gnuplot> set style data line
gnuplot> set xlabel ”Freqency” font ”Curier,14”
gnuplot> set title ”Fast Fourier Transform” font ”Curier,14”
gnuplot> set grid xtics ytics
gnuplot> set yrange [0:30000000]
gnuplot> set xrange [0:0.3]
gnuplot> set xtics 0.025
gnuplot> plot ”data.dat”

Analyzing

Once the data is being transformed and plotted it is time to read the image. The usual way of
plotting the transform is with the lower frequency to the left (with an absolute minimum at the
origin) and grows to the right. In our case we have one day of data which is 86400 seconds, we also
have 86400 entries, so our limits are 1/86400 to the left - meaning that an even can repeat at the
rate of once every second - and 1 to the right - which means that the event occurs once in the data
(or once a day). In our example only a third of the actual spectrum is displayed, since the most
interesting part to look at is the closer to the left, where events are more frequent. One hertz in
our case means ”once every day”, but since we do not have data for more than one day, the result
is not accurate. 0.3 of a hertz is ”1/3 of a day” in our case which is ”once every 8 hours”. So in
our one day data we will look at events that repeat at least once every 8 hours and will emphasize
on the left part of the plot (every few minutes). Looking at Figure 2 it is clear that there are a
lot of repeating events. We can say several facts about this traffic. Starting at about 0.016 (23min)
and going to the right of the image we can identify several different events with frequency change of
about 0.024(36mins) apart. That is quite interesting. The first event is at frequency 0.016Hz and
it means that there is an event throughout the day that generates the same amount of traffic every
23 minutes. Since the data was harvested on a web server, it could be a spider that is refreshing his
index. We cannot say what caused the traffic, but we can say that something is generating traffic
every 23 minutes.

One factor to consider here is that the analyzed data is too little for the transform to represent
accurate frequent events in the traffic, especially when they get more to the right of the graph.

6

Figure 2: 1/3 of the spectrum

7

In order for our analysis to be accurate we must look at the leftmost part of the spectrum, where
events are sampled many times in one day and are detected correctly. Most events that are more
than couple of tens of minutes could be just regular traffic generated on the network. A higher
resolution image of the part from the origin to just before the first big spike could be the best place
to look at. That is between 0 and 0.0165. Using the following lines we plot the data and we can
see on Figure 3 that there is a pretty nice peak at around 0.0083. Looking at the that spike in the
graph, we can certainly say that there is a good chance that an event is generating a good amount
of traffic every about 12 minutes. Looking at the actual traffic graph, however, it is very hard to
tell weather this is a separate event or a part of an event that repeats alot faster. we can see that
there are maybe 3 actual events in total that can be stated as repeating throughout the day and
the rest is just noise. So here something strange appears. There are many spikes in the plot that
are not really in the original data.

gnuplot> set term aqua
gnuplot> set size 1,1
gnuplot> set style data line
gnuplot> set xlabel ”Freqency” font ”Curier,14”
gnuplot> set title ”Fast Fourier Transform” font ”Curier,14”
gnuplot> set grid xtics ytics
gnuplot> set yrange [0:4000000]
gnuplot> set xrange [0:0.016]
gnuplot> set xtics 0.0013
gnuplot> plot ”data.dat”

When the issue was discussed with my advisor, he suggested to smoothen the data and to plot it
again, hoping for cleanup of most spikes, but the result was not much better. The plot still looked
like the one on Figure 2. The smoothing of the data was done using the formula:
Given original values t1, t2, t3, t4 ... compute the new corresponding smooth values s1, s2, s3, s4
as follows:

s1 = t1
s2 = t2 + s1/2
s3 = t3 + s2 /2
s4 = t4 + s3 /2

The next step in trying to identify events was to introduce an artificial traffic event that gen-
erates huge traffic every 20 minutes. In theory this event should produce a clear spike in the 20
minute zone on the graph (1/(20*60) = 0.00083333Hz). And indeed, after plotting the modified
data, the spike did appear on the 0.0008xxxx spot. Unfortunately it appeared on any frequency
multiple of 0.00083xxx as shown on Figure 4.
Here is the code to modify the data:

my $temp=0;
while (<STDIN>){

chomp $;

8

Figure 3: A small part of the most frequent events

9

@a = split/\s+/, $;
$asd=$a[0];
printf "%.2f", $asd;
print "\n";
if ($temp%1200 eq 0){

print "100000000\n";
}
$temp++;

}

Figure 4: 0Hz to 0.1Hz artificial 20 minute event

The result in the end is a little disappointing. It does not produce the expected output, and
just looking at the pure output it is very hard to identify clean events from the output. The nature
of network traffic, even appropriate for fourier transforms is too random and with lots of noise
that interferes with the traffic generated from regular basis events. The expected result was that a
clean cut spikes will be produced like when producing a fourier transform of the function sin(x) .
Instead the randomness of the network traffic as a function produces too much noise in the output
and makes the technique not very practical. Other techniques such as wavelets have been much

10

more successful in analyzing the flow of network data. It is clear, however, that applying Fourier
Transforms to network traffic does not produce spectrum with clean information on it.

Bibliography

[Frigo and Johnson, 2006] Frigo, M. and Johnson, S. G. (2006). Fastest Fourier Transform in the
West. http://www.fftw.org.

[i scream, 2006] i scream (2006). libstatgrab. http://www.i-scream.org/libstatgrab/.

[Kaplan, 2002] Kaplan, I. (2001,2002). A Notebook Compiled While Reading Understanding Digital
Signal Processing by Lyons. http://www.bearcave.com/misl/misl_tech/signal/index.html.

[Persson, 2004] Persson, P. (2001-2004). AquaTerm.app, your friendly plotting front-end. http:

//aquaterm.sourceforge.net.

[Thomas Williams, 2004] Thomas Williams, C. K. (1986 - 1993, 1998, 2004). GNUPLOT: An
Interactive Plotting Program. www.gnuplot.info.

[Tolstov, 1976] Tolstov, G. (1976). Fourier Series. Courier Dover Publications.

[Wikipedia, 2007a] Wikipedia, t. f. e. (2007a). FFTW. http://en.wikipedia.org/wiki/FFTW.

[Wikipedia, 2007b] Wikipedia, t. f. e. (2007b). Fourier transform. http://en.wikipedia.org/wiki/
Fourier_Transform.

[www.captain.at, 2005] www.captain.at (2005). Spectrograms with the FFTW FFT-Spectrograph
library and GNUplot on Linux. www.captain.at.

11

http://www.fftw.org
http://www.i-scream.org/libstatgrab/
http://www.bearcave.com/misl/misl_tech/signal/index.html
http://aquaterm.sourceforge.net
http://aquaterm.sourceforge.net
www.gnuplot.info
http://en.wikipedia.org/wiki/FFTW
http://en.wikipedia.org/wiki/Fourier_Transform
http://en.wikipedia.org/wiki/Fourier_Transform
www.captain.at

